Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Protein Sci ; 32(10): e4767, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37615343

RESUMO

RAS GTPases are proto-oncoproteins that regulate cell growth, proliferation, and differentiation in response to extracellular signals. The signaling functions of RAS, and other small GTPases, are dependent on their ability to cycle between GDP-bound and GTP-bound states. Structural analyses suggest that GTP hydrolysis catalyzed by HRAS can be regulated by an allosteric site located between helices 3, 4, and loop 7. Here we explore the relationship between intrinsic GTP hydrolysis on HRAS and the position of helix 3 and loop 7 through manipulation of the allosteric site, showing that the two sites are functionally connected. We generated several hydrophobic mutations in the allosteric site of HRAS to promote shifts in helix 3 relative to helix 4. By combining crystallography and enzymology to study these mutants, we show that closure of the allosteric site correlates with increased hydrolysis of GTP on HRAS in solution. Interestingly, binding to the RAS binding domain of RAF kinase (RAF-RBD) inhibits GTP hydrolysis in the mutants. This behavior may be representative of a cluster of mutations found in human tumors, which potentially cooperate with RAF complex formation to stabilize the GTP-bound state of RAS.


Assuntos
Quinases raf , Proteínas ras , Humanos , Sítio Alostérico , Hidrólise , Quinases raf/química , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Guanosina Trifosfato/metabolismo
2.
Nature ; 594(7863): 418-423, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33953400

RESUMO

Although RAF monomer inhibitors (type I.5, BRAF(V600)) are clinically approved for the treatment of BRAFV600-mutant melanoma, they are ineffective in non-BRAFV600 mutant cells1-3. Belvarafenib is a potent and selective RAF dimer (type II) inhibitor that exhibits clinical activity in patients with BRAFV600E- and NRAS-mutant melanomas. Here we report the first-in-human phase I study investigating the maximum tolerated dose, and assessing the safety and preliminary efficacy of belvarafenib in BRAFV600E- and RAS-mutated advanced solid tumours (NCT02405065, NCT03118817). By generating belvarafenib-resistant NRAS-mutant melanoma cells and analysing circulating tumour DNA from patients treated with belvarafenib, we identified new recurrent mutations in ARAF within the kinase domain. ARAF mutants conferred resistance to belvarafenib in both a dimer- and a kinase activity-dependent manner. Belvarafenib induced ARAF mutant dimers, and dimers containing mutant ARAF were active in the presence of inhibitor. ARAF mutations may serve as a general resistance mechanism for RAF dimer inhibitors as the mutants exhibit reduced sensitivity to a panel of type II RAF inhibitors. The combination of RAF plus MEK inhibition may be used to delay ARAF-driven resistance and suggests a rational combination for clinical use. Together, our findings reveal specific and compensatory functions for the ARAF isoform and implicate ARAF mutations as a driver of resistance to RAF dimer inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação , Proteínas Proto-Oncogênicas A-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas A-raf/genética , Quinases raf/antagonistas & inibidores , Animais , Linhagem Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Melanoma/patologia , Camundongos , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas A-raf/química , Quinases raf/química
3.
Molecules ; 26(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923909

RESUMO

The binding free energy calculation of protein-ligand complexes is necessary for research into virus-host interactions and the relevant applications in drug discovery. However, many current computational methods of such calculations are either inefficient or inaccurate in practice. Utilizing implicit solvent models in the molecular mechanics generalized Born surface area (MM/GBSA) framework allows for efficient calculations without significant loss of accuracy. Here, GBNSR6, a new flavor of the generalized Born model, is employed in the MM/GBSA framework for measuring the binding affinity between SARS-CoV-2 spike protein and the human ACE2 receptor. A computational protocol is developed based on the widely studied Ras-Raf complex, which has similar binding free energy to SARS-CoV-2/ACE2. Two options for representing the dielectric boundary of the complexes are evaluated: one based on the standard Bondi radii and the other based on a newly developed set of atomic radii (OPT1), optimized specifically for protein-ligand binding. Predictions based on the two radii sets provide upper and lower bounds on the experimental references: -14.7(ΔGbindBondi)<-10.6(ΔGbindExp.)<-4.1(ΔGbindOPT1) kcal/mol. The consensus estimates of the two bounds show quantitative agreement with the experiment values. This work also presents a novel truncation method and computational strategies for efficient entropy calculations with normal mode analysis. Interestingly, it is observed that a significant decrease in the number of snapshots does not affect the accuracy of entropy calculation, while it does lower computation time appreciably. The proposed MM/GBSA protocol can be used to study the binding mechanism of new variants of SARS-CoV-2, as well as other relevant structures.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Algoritmos , Enzima de Conversão de Angiotensina 2/química , COVID-19/patologia , COVID-19/virologia , Entropia , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Quinases raf/química , Quinases raf/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653954

RESUMO

Ras dimerization is critical for Raf activation. Here we show that the Ras binding domain of Raf (Raf-RBD) induces robust Ras dimerization at low surface densities on supported lipid bilayers and, to a lesser extent, in solution as observed by size exclusion chromatography and confirmed by SAXS. Community network analysis based on molecular dynamics simulations shows robust allosteric connections linking the two Raf-RBD D113 residues located in the Galectin scaffold protein binding site of each Raf-RBD molecule and 85 Å apart on opposite ends of the dimer complex. Our results suggest that Raf-RBD binding and Ras dimerization are concerted events that lead to a high-affinity signaling complex at the membrane that we propose is an essential unit in the macromolecular assembly of higher order Ras/Raf/Galectin complexes important for signaling through the Ras/Raf/MEK/ERK pathway.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras)/química , Quinases raf/química , Galectinas/química , Galectinas/genética , Galectinas/metabolismo , Humanos , Domínios Proteicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
5.
Angew Chem Int Ed Engl ; 60(12): 6567-6572, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33427372

RESUMO

Cyclorasins 9A5 and 9A54 are 11-mer cyclic peptides that inhibit the Ras-Raf protein interaction. The peptides share a cell-penetrating peptide (CPP)-like motif; however, only cyclorasin 9A5 can permeabilize cells to exhibit strong cell-based activity. To unveil the structural origin underlying their distinct cellular permeabilization activities, we compared the three-dimensional structures of cyclorasins 9A5 and 9A54 in water and in the less polar solvent dimethyl sulfoxide (DMSO) by solution NMR. We found that cyclorasin 9A5 changes its extended conformation in water to a compact amphipathic structure with converged aromatic residues surrounded by Arg residues in DMSO, which might contribute to its cell permeabilization activity. However, cyclorasin 9A54 cannot adopt this amphipathic structure, due to the steric hindrance between two neighboring bulky amino-acid sidechains, Tle-2 and dVal-3. We also found that the bulkiness of the sidechains at positions 2 and 3 negatively affects the cell permeabilization activities, indicating that the conformational plasticity that allows the peptides to form the amphipathic structure is important for their cell permeabilization activities.


Assuntos
Peptídeos Cíclicos/farmacologia , Quinases raf/antagonistas & inibidores , Proteínas ras/antagonistas & inibidores , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Conformação Proteica , Quinases raf/química , Quinases raf/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo
6.
Biochem Soc Trans ; 49(1): 237-251, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33367512

RESUMO

The RAS-regulated RAF-MEK1/2-ERK1/2 pathway promotes cell proliferation and survival and RAS and BRAF proteins are commonly mutated in cancer. This has fuelled the development of small molecule kinase inhibitors including ATP-competitive RAF inhibitors. Type I and type I½ ATP-competitive RAF inhibitors are effective in BRAFV600E/K-mutant cancer cells. However, in RAS-mutant cells these compounds instead promote RAS-dependent dimerisation and paradoxical activation of wild-type RAF proteins. RAF dimerisation is mediated by two key regions within each RAF protein; the RKTR motif of the αC-helix and the NtA-region of the dimer partner. Dimer formation requires the adoption of a closed, active kinase conformation which can be induced by RAS-dependent activation of RAF or by the binding of type I and I½ RAF inhibitors. Binding of type I or I½ RAF inhibitors to one dimer partner reduces the binding affinity of the other, thereby leaving a single dimer partner uninhibited and able to activate MEK. To overcome this paradox two classes of drug are currently under development; type II pan-RAF inhibitors that induce RAF dimer formation but bind both dimer partners thus allowing effective inhibition of both wild-type RAF dimer partners and monomeric active class I mutant RAF, and the recently developed "paradox breakers" which interrupt BRAF dimerisation through disruption of the αC-helix. Here we review the regulation of RAF proteins, including RAF dimers, and the progress towards effective targeting of the wild-type RAF proteins.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Quinases raf/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , Estrutura Secundária de Proteína/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/fisiologia , Quinases raf/química , Quinases raf/metabolismo
7.
Nature ; 588(7838): 509-514, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32927473

RESUMO

The MAPK/ERK kinase MEK is a shared effector of the frequent cancer drivers KRAS and BRAF that has long been pursued as a drug target in oncology1, and more recently in immunotherapy2,3 and ageing4. However, many MEK inhibitors are limited owing to on-target toxicities5-7 and drug resistance8-10. Accordingly, a molecular understanding of the structure and function of MEK within physiological complexes could provide a template for the design of safer and more effective therapies. Here we report X-ray crystal structures of MEK bound to the scaffold KSR (kinase suppressor of RAS) with various MEK inhibitors, including the clinical drug trametinib. The structures reveal an unexpected mode of binding in which trametinib directly engages KSR at the MEK interface. In the bound complex, KSR remodels the prototypical allosteric pocket of the MEK inhibitor, thereby affecting binding and kinetics, including the drug-residence time. Moreover, trametinib binds KSR-MEK but disrupts the related RAF-MEK complex through a mechanism that exploits evolutionarily conserved interface residues that distinguish these sub-complexes. On the basis of these insights, we created trametiglue, which limits adaptive resistance to MEK inhibition by enhancing interfacial binding. Our results reveal the plasticity of an interface pocket within MEK sub-complexes and have implications for the design of next-generation drugs that target the RAS pathway.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Piridonas/química , Piridonas/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/efeitos dos fármacos , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Especificidade por Substrato , Quinases raf/química , Quinases raf/metabolismo
8.
Sci Rep ; 9(1): 10929, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358819

RESUMO

The rapidly accelerated fibrosarcoma (Raf) kinase is canonically activated by growth factors that regulate multiple cellular processes. In this kinase cascade Raf activation ultimately results in extracellular regulated kinase 1/2 (Erk1/2) activation, which requires Ras binding to the Ras binding domain (RBD) of Raf. We recently reported that all-trans retinoic acid (atRA) rapidly (within minutes) activates Erk1/2 to modulate cell cycle progression in stem cells, which is mediated by cellular retinoic acid binding protein 1 (Crabp1). But how atRA-bound Crabp1 regulated Erk1/2 activity remained unclear. We now report Raf kinase as the direct target of atRA-Crabp1. Molecularly, Crabp1 acts as a novel atRA-inducible scaffold protein for Raf/Mek/Erk in cells without growth factor stimulation. However, Crabp1 can also compete with Ras for direct interaction with the RBD of Raf, thereby negatively modulating growth factor-stimulated Raf activation, which can be enhanced by atRA binding to Crabp1. NMR heteronuclear single quantum coherence (HSQC) analyses reveal the 6-strand ß-sheet face of Crabp1 as its Raf-interaction surface. We identify a new atRA-mimicking and Crabp1-selective compound, C3, that can also elicit such an activity. This study uncovers a new signal crosstalk between endocrine (atRA-Crabp1) and growth factor (Ras-Raf) pathways, providing evidence for atRA-Crabp1 as a novel modulator of cell growth. The study also suggests a new therapeutic strategy by employing Crabp1-selective compounds to dampen growth factor stimulation while circumventing RAR-mediated retinoid toxicity.


Assuntos
Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Quinases raf/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Camundongos , Ligação Proteica , Conformação Proteica em Folha beta , Receptores do Ácido Retinoico/química , Tretinoína/análogos & derivados , Tretinoína/metabolismo , Quinases raf/química
9.
Proc Natl Acad Sci U S A ; 116(27): 13330-13339, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213532

RESUMO

Despite the crucial role of RAF kinases in cell signaling and disease, we still lack a complete understanding of their regulation. Heterodimerization of RAF kinases as well as dephosphorylation of a conserved "S259" inhibitory site are important steps for RAF activation but the precise mechanisms and dynamics remain unclear. A ternary complex comprised of SHOC2, MRAS, and PP1 (SHOC2 complex) functions as a RAF S259 holophosphatase and gain-of-function mutations in SHOC2, MRAS, and PP1 that promote complex formation are found in Noonan syndrome. Here we show that SHOC2 complex-mediated S259 RAF dephosphorylation is critically required for growth factor-induced RAF heterodimerization as well as for MEK dissociation from BRAF. We also uncover SHOC2-independent mechanisms of RAF and ERK pathway activation that rely on N-region phosphorylation of CRAF. In DLD-1 cells stimulated with EGF, SHOC2 function is essential for a rapid transient phase of ERK activation, but is not required for a slow, sustained phase that is instead driven by palmitoylated H/N-RAS proteins and CRAF. Whereas redundant SHOC2-dependent and -independent mechanisms of RAF and ERK activation make SHOC2 dispensable for proliferation in 2D, KRAS mutant cells preferentially rely on SHOC2 for ERK signaling under anchorage-independent conditions. Our study highlights a context-dependent contribution of SHOC2 to ERK pathway dynamics that is preferentially engaged by KRAS oncogenic signaling and provides a biochemical framework for selective ERK pathway inhibition by targeting the SHOC2 holophosphatase.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases raf/química , Quinases raf/metabolismo , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Edição de Genes , Técnicas de Inativação de Genes , Humanos , Fosforilação , Multimerização Proteica , Proteínas ras/metabolismo
10.
Eur J Med Chem ; 158: 144-166, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30216849

RESUMO

Frequent oncogenic mutations have been identified in MAPK (mitogen-activated protein kinase) signaling pathway components. As a result, MAPK pathway is associated with human cancer initiation, in particular RAF (rapidly accelerated fibrosarcoma) component. The mutation in RAF component leads to auto-activation of MAPK signaling pathway, stimulating the uncontrolled cell growth and proliferation. In last few years, diverse chemical scaffolds have been identified as RAF inhibitors. Most of these scaffolds show potent anti-cancer activity. The present review highlights the recent investigations of RAF inhibitors during the last five years.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinases raf/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases raf/química , Quinases raf/metabolismo
11.
Curr Opin Struct Biol ; 53: 100-106, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30059805

RESUMO

Protein kinases are evolutionarily crafted into two functional states. In response to stimuli, kinase, which is usually populated in an inactive state, becomes active. Here, we outline a unified scheme to explain how kinases are activated physiologically and pathologically, focusing on RAF allosteric activation. Key concepts include the population shift from the inactive to the active state is relative; the relative populations are altered additively via allosteric events; and the structural features of the active conformation are coupled with the regulatory and catalytic spines to align the catalytic sequence motifs. This structural insight clarifies why the prerequisite of RAF dimerization, how the V600E oncogenic mutation activates RAF, how a RAF inhibitor executes paradoxical activation, and provides pharmaceutical guidelines.


Assuntos
Quinases raf/química , Quinases raf/metabolismo , Regulação Alostérica , Ativação Enzimática , Humanos , Sistema de Sinalização das MAP Quinases , Mutação Puntual , Domínios Proteicos , Inibidores de Proteínas Quinases/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Transdução de Sinais , Quinases raf/genética
12.
Cell Syst ; 7(2): 161-179.e14, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30007540

RESUMO

Clinically used RAF inhibitors are ineffective in RAS mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, posttranslational modifications, and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS, and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases raf/antagonistas & inibidores , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Simulação de Acoplamento Molecular , Mutação/efeitos dos fármacos , Neoplasias/genética , Neoplasias/metabolismo , Multimerização Proteica/efeitos dos fármacos , Termodinâmica , Quinases raf/química , Quinases raf/metabolismo , Proteínas ras/genética
13.
Sci Rep ; 8(1): 8461, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855542

RESUMO

Activation of RAF kinase involves the association of its RAS-binding domain (RBD) and cysteine-rich domain (CRD) with membrane-anchored RAS. However, the overall architecture of the RAS/RBD/CRD ternary complex and the orientations of its constituent domains at the membrane remain unclear. Here, we have combined all-atom and coarse-grained molecular dynamics (MD) simulations with experimental data to construct and validate a model of membrane-anchored CRD, and used this as a basis to explore models of membrane-anchored RAS/RBD/CRD complex. First, simulations of the CRD revealed that it anchors to the membrane via insertion of its two hydrophobic loops, which is consistent with our NMR measurements of CRD bound to nanodiscs. Simulations of the CRD in the context of membrane-anchored RAS/RBD then show how CRD association with either RAS or RBD could play an unexpected role in guiding the membrane orientations of RAS/RBD. This finding has implications for the formation of RAS-RAS dimers, as different membrane orientations of RAS expose distinct putative dimerization interfaces.


Assuntos
Membrana Celular/metabolismo , Quinases raf/metabolismo , Proteínas ras/metabolismo , Sítios de Ligação , Cisteína/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Quinases raf/química , Quinases raf/genética , Proteínas ras/química , Proteínas ras/genética
14.
Biochem J ; 475(15): 2417-2433, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29934491

RESUMO

Sulfation of carbohydrate residues occurs on a variety of glycans destined for secretion, and this modification is essential for efficient matrix-based signal transduction. Heparan sulfate (HS) glycosaminoglycans control physiological functions ranging from blood coagulation to cell proliferation. HS biosynthesis involves membrane-bound Golgi sulfotransferases, including HS 2-O-sulfotransferase (HS2ST), which transfers sulfate from the cofactor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the 2-O position of α-l-iduronate in the maturing polysaccharide chain. The current lack of simple non-radioactive enzyme assays that can be used to quantify the levels of carbohydrate sulfation hampers kinetic analysis of this process and the discovery of HS2ST inhibitors. In the present paper, we describe a new procedure for thermal shift analysis of purified HS2ST. Using this approach, we quantify HS2ST-catalysed oligosaccharide sulfation using a novel synthetic fluorescent substrate and screen the Published Kinase Inhibitor Set, to evaluate compounds that inhibit catalysis. We report the susceptibility of HS2ST to a variety of cell-permeable compounds in vitro, including polyanionic polar molecules, the protein kinase inhibitor rottlerin and oxindole-based RAF kinase inhibitors. In a related study, published back-to-back with the present study, we demonstrated that tyrosyl protein sulfotranferases are also inhibited by a variety of protein kinase inhibitors. We propose that appropriately validated small-molecule compounds could become new tools for rapid inhibition of glycan (and protein) sulfation in cells, and that protein kinase inhibitors might be repurposed or redesigned for the specific inhibition of HS2ST.


Assuntos
Proteínas Aviárias/química , Heparitina Sulfato/química , Oligossacarídeos/química , Inibidores de Proteínas Quinases/química , Sulfotransferases/química , Quinases raf/antagonistas & inibidores , Animais , Proteínas Aviárias/genética , Galinhas , Heparitina Sulfato/farmacologia , Humanos , Oligossacarídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfotransferases/genética , Suínos , Quinases raf/química
15.
Br J Cancer ; 118(1): 3-8, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29235562

RESUMO

The Raf protein kinases are key intermediates in cellular signal transduction, functioning as direct effectors of the Ras GTPases and as the initiating kinases in the ERK cascade. In human cancer, Raf activity is frequently dysregulated due to mutations in the Raf family member B-Raf or to alterations in upstream Raf regulators, including Ras and receptor tyrosine kinases. First-generation Raf inhibitors, such as vemurafenib and dabrafenib, have yielded dramatic responses in malignant melanomas containing B-Raf mutations; however, their overall usefulness has been limited by both intrinsic and acquired drug resistance. In particular, issues related to the dimerisation of the Raf kinases can impact the efficacy of these compounds and are a primary cause of drug resistance. Here, we will review the importance of Raf dimerisation in cell signalling as well as its effects on Raf inhibitor therapy, and we will present the new strategies that are being pursued to overcome the 'Raf Dimer Dilemma'.


Assuntos
Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Quinases raf/química , Resistencia a Medicamentos Antineoplásicos , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Modelos Moleculares , Terapia de Alvo Molecular , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oximas/farmacologia , Oximas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Multimerização Proteica , Transdução de Sinais , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Quinases raf/antagonistas & inibidores , Quinases raf/genética
16.
EMBO Rep ; 19(2): 320-336, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29263201

RESUMO

Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS-mutant cells, and with oncogenic BRAF in BRAFV600E-mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS-mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAFV600E-mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases/metabolismo , Multimerização Proteica , Estresse Fisiológico , Quinases raf/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Ativação Enzimática , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Glucose/metabolismo , Glicólise , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Consumo de Oxigênio , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Recombinantes de Fusão , Quinases raf/química , Quinases raf/genética
17.
Cell Mol Life Sci ; 74(17): 3245-3261, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28597297

RESUMO

How Ras, and in particular its most abundant oncogenic isoform K-Ras4B, is activated and signals in proliferating cells, poses some of the most challenging questions in cancer cell biology. In this paper, we ask how intrinsically disordered regions in K-Ras4B and its effectors help promote proliferative signaling. Conformational disorder allows spanning long distances, supports hinge motions, promotes anchoring in membranes, permits segments to fulfil multiple roles, and broadly is crucial for activation mechanisms and intensified oncogenic signaling. Here, we provide an overview illustrating some of the key mechanisms through which conformational disorder can promote oncogenesis, with K-Ras4B signaling serving as an example. We discuss (1) GTP-bound KRas4B activation through membrane attachment; (2) how farnesylation and palmitoylation can promote isoform functional specificity; (3) calmodulin binding and PI3K activation; (4) how Ras activates its RASSF5 cofactor, thereby stimulating signaling of the Hippo pathway and repressing proliferation; and (5) how intrinsically disordered segments in Raf help its attachment to the membrane and activation. Collectively, we provide the first inclusive review of the roles of intrinsic protein disorder in oncogenic Ras-driven signaling. We believe that a broad picture helps to grasp and formulate key mechanisms in Ras cancer biology and assists in therapeutic intervention.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Neoplasias/metabolismo , Proteínas ras/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Lipoilação , Simulação de Dinâmica Molecular , Neoplasias/patologia , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Quinases raf/química , Quinases raf/metabolismo , Proteínas ras/química
18.
J Chem Inf Model ; 57(6): 1439-1452, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28485964

RESUMO

While selective BRafV600E inhibitors have been proven effective clinically, acquired resistance rapidly develops through reactivation of the mitogen-activated protein kinase (MAPK) pathway. Simultaneous targeting of multiple nodes in the pathway offers the prospect of enhanced efficacy as well as reduced potential for acquired resistance. Replacement pyridine group of Y-1 by a cyclopropyl formamide group afforded I-01 as a novel multitargeted kinase inhibitor template. I-01 displayed enzyme potency against Pan-Raf and receptor tyrosine kinases (RTKs). Based on the binding mode of I-01, analogues I-02-I-18 were designed and synthesized. The most promising compound I-16 potently inhibits all subtypes of Rafs with IC50 values of 3.49 (BRafV600E), 8.86 (ARaf), 5.78 (BRafWT), and 1.65 nM (CRaf), respectively. I-16 not only exhibit comparable antiproliferative activities with positive control compounds against HepG2, SW579, MV4-11, and COLO205 cell lines, but also suppress the proliferation of melanoma SK-MEL-2 harboring overexpressed BRafWT with IC50 values of 0.93 µM. The Western blot results for the ERK inhibition in human melanoma SK-MEL-2 cell lines show that I-16 inhibits the proliferation of SK-MEL-2 cell lines without paradoxical activation of ERK, which support the hypothesis that the inhibition of Pan-Raf and RTKs might be a tractable strategy to overcome the resistance of melanoma induced by the therapy with the current selective BRafV600E inhibitors.


Assuntos
Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Formamidas/química , Formamidas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinases raf/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/química , Quinases raf/química
19.
Eur J Med Chem ; 127: 413-423, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28088086

RESUMO

This article describes the design, synthesis, and biological screening of a new series of diarylurea derivatives possessing quinoline nucleus. Nine target compounds were selected by the National Cancer Institute (NCI, Bethesda, Maryland, USA) for in vitro antiproliferative screening against a panel of 58 cancer cell lines of nine cancer types. Following one-dose initial screening, compounds 1d-g and 2b were selected for 5-dose screening in order to calculate their IC50 and total growth inhibition (TGI) values against the cell lines. Compounds 1e and 1g were the most promising analogues. Both compounds showed strong potency and broad-spectrum antiproliferative activity against the different tested cancer types. Their IC50 and TGI values were less than those of the reference drug, sorafenib, against most of the tested cell lines of the nine different cancer types. Furthermore, the most potent compounds 1d-g were tested against C-RAF kinase as a potential molecular target of this series of compounds. All of them showed high potency, and the most potent derivative was compound 1e (IC50 = 0.10 µM). It was further tested against a panel of another twelve kinases, and it showed selectivity against C-RAF kinase. This could be, at least in part, the possible mechanism of antiproliferative action of this series of compounds at molecular level. The binding modes of compounds 1e and 1g were studied by docking studies, which highlighted the importance of the urea linker compared with the amide linker.


Assuntos
Desenho de Fármacos , Quinolinas/química , Ureia/síntese química , Ureia/farmacologia , Quinases raf/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Ureia/química , Ureia/metabolismo , Quinases raf/química , Quinases raf/metabolismo
20.
J Mol Biol ; 428(20): 4185-4196, 2016 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-27620500

RESUMO

The molecular chaperone Hsp90 and its cofactor Cdc37 are required for the stability of protein kinases in the cellular environment. Upon pharmacological inhibition of Hsp90, the Hsp90-dependent kinases are degraded quickly by the proteasome. Clear physiological evidence for the formation of heterooligomeric complexes between the chaperone system and its kinase clients exist, but the mechanisms of client processing are still enigmatic. Here, we investigate the interaction of the chaperone system with a stabilized fragment of the Hsp90-dependent protein kinase B-Raf (sB-Raf). sB-Raf is aggregation prone at elevated temperatures. We find that nucleotide binding strongly stabilizes the folded state of sB-Raf and suppresses its aggregation. Also, Cdc37 and Hsp90 in combination can suppress sB-Raf aggregation while forming a ternary complex with the kinase. The presence of nucleotides leads to the dissociation of the kinase from the ternary chaperone complex, implying that the stabilization of the kinase by nucleotides reduces its affinity toward the chaperone machinery. Human Cdc37-Hsp90 complexes can bind to kinase, if the NM domain of the chaperone is present. Nematode Cdc37, which does not require the N-terminal Hsp90 domain for binding, can form a ternary complex with the MC construct of Hsp90, which lacks the aggregation propensity of sB-Raf. Like the full-length complex, this interaction is sensitive to ATP binding to sB-Raf. We thus find that the interaction between sB-Raf and the Hsp90 chaperone system is based on contacts with the M domain of Hsp90, which contributes in forming the ternary complex with CeCdc37 as long as the kinase is not stabilized by nucleotide.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Nucleotídeos/metabolismo , Multimerização Proteica , Quinases raf/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Humanos , Estabilidade Proteica , Quinases raf/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...